If $\frac{{z - \alpha }}{{z + \alpha }}\left( {\alpha \in R} \right)$ is a purely imaginary number and $\left| z \right| = 2$, then a value of $\alpha $ is
$2$
$1$
$\frac{1}{2}$
$\sqrt 2$
Modulus of $\left( {\frac{{3 + 2i}}{{3 - 2i}}} \right)$ is
The conjugate of a complex number is $\frac{1}{{i - 1}}$ then that complex number is
The conjugate of complex number $\frac{{2 - 3i}}{{4 - i}},$ is
Let $z _{1}$ and $z _{2}$ be two complex numbers such that $\overline{ z }_{1}=i \overline{ z }_{2}$ and $\arg \left(\frac{ z _{1}}{\overline{ z }_{2}}\right)=\pi$. Then
The number of solutions of the equation ${z^2} + \bar z = 0$ is