- Home
- Standard 11
- Mathematics
4-1.Complex numbers
hard
If $\frac{{z - \alpha }}{{z + \alpha }}\left( {\alpha \in R} \right)$ is a purely imaginary number and $\left| z \right| = 2$, then a value of $\alpha $ is
A
$2$
B
$1$
C
$\frac{1}{2}$
D
$\sqrt 2$
(JEE MAIN-2019)
Solution
$\frac{{z\, – \,\alpha }}{{z\, + \,\alpha }}\, = \, – \,\left( {\frac{{\bar z\, – \,\alpha }}{{\bar z\, + \,\alpha }}} \right)$
$z\bar z\, + \,z\alpha \, – \,\alpha \bar z\, – \,{\alpha ^2}$ $ = \, – \,z\bar z\, + \,\,\alpha \bar z\, – \,\alpha \bar z\, + {\alpha ^2}\,$
${\alpha ^2}\, = \,|z{|^2}$
$\alpha \, = \, \pm \,2$
Standard 11
Mathematics
Similar Questions
Let $z$ be complex number satisfying $|z|^3+2 z^2+4 z-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.
Match each entry in List-$I$ to the correct entries in List-$II$.
List-$I$ | List-$II$ |
($P$) $|z|^2$ is equal to | ($1$) $12$ |
($Q$) $|z-\bar{z}|^2$ is equal to | ($2$) $4$ |
($R$) $|z|^2+|z+\bar{z}|^2$ is equal to | ($3$) $8$ |
($S$) $|z+1|^2$ is equal to | ($4$) $10$ |
($5$) $7$ |
The correct option is: